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Structured p2p overlay networks

operation:
route(msg,key)

overlay network

k1,v1

k3,v3

k6,v6

k,v

node i

node j

route(“insert v”, k)

route(“lookup”, k) v

• structured overlay network maps keys to nodes
• routes messages to keys; can implement hash table

[CAN, Chord, Kademlia, Pastry, Skipnets, Tapestry, Viceroy]



Why structured overlays?

scalable
route in O(log N) hops with O(log N) node 
state

balance routing and key management load

self-organizing
fix overlay when nodes join or leave

redistribute load when nodes join or leave

completely decentralized with no 
administrators

Good substrate for distributed applications



Problem 1: attacks on routing

some overlay nodes are likely to be 
malicious

large scale

distributed open environment

no special administration

malicious nodes can attack routing

corrupt messages, stored data, and services

drop messages

misroute messages



Problem 2: fair-sharing of resources

Why should node A do work on behalf of 
node B?

Tragedy of the commons
Why contribute resources if it’s not necessary?

Example: Most Gnutella users do not 
contribute disk space to the network

BitTorrent exactly addresses this problem!



In this talk

Routing security
Improve robustness of p2p primitives

Tollerate some fraction of malicious nodes

The next talk
Application-level fairness

Auditing mechanisms that enforce fairness
Economic incentives to participate correctly



Traditional security ideas?

Integrity and authenticity guarantees
self-certifying data and services

Byzantine fault tolerant replication

Denial-of-service
easy to detect dropped messages

hard to detect misrouting
sender does not know message destination

overlay structure determines message destination

attacker can misroute to credible destination



Structured routing example

Pastry p2p substrate 
[Rowstron, Druschel ’01]

Techniques generalize to other p2p systems



Mapping keys to nodes

• large id space (128 bit integers) 

• nodeIds picked randomly from space

• keys picked randomly from space

• key is managed by its root node:

• live node with id closest to the key

• key is replicated by its replica roots:

• r nodes with ids closest to key

root node
for key

id space

nodeId
key



Node routing state

ids and keys are 128-bit numbers in base 2b

typically, b=4 (hexadecimal, base 16)

topology aware routing table
matrix with 128/4 rows and 16 columns 
entry in row i and column j contains a

nodeId that matches current nodeId in first i digits
and has value j in the next digit
id is among the closest in underlying network

neighbor set: L/2 closest ids left and right

typically, L=16 or L=32



Pastry: routing 

d46a1c

d4213f

d13da3

65a1fc
d462ba

nodeId
key

route(m,d46a1c)

prefix matching: each hop resolves extra key digit
neighbor set used to find root node in last hop
properties: log16N hops with low delay routes



Secure routing

sec-route(m,k,r): 
delivers message m to all the correct replica 
roots of key k with high probability

r is the number of replica roots

assumed security model
Byzantine faults: arbitrary behavior

bound f on fraction of faulty overlay nodes



Attacks on nodeId assignment

attacker can obtain many nodeIds
• control arbitrary fraction f

• a.k.a. Sybil attacks [Doceur ’02]

attacker can pick ids closest to a key
• control all replica roots (targeted attack)
• break Pastry invariant on neighbor sets 



Secure nodeId assignment

certified nodeIds

trusted certification authorities
assign random nodeIds 

certificates binding id with node public key

charge money for certificates or check 
identities

nodes in small overlays must be trusted

distributed assignment has fundamental weakness



Routing table maintenance

routing table maintenance should ensure:
If attacker controls nodes with probability f,

entries in routing tables are bad with 
probability f

attacks on routing table maintenance
malicious seed nodes for joining

bad routing updates
exploit locality to bias choice of routing entries   

exploit flexibility to bias choice of routing entries 



Routing updates on Pastry

source of update correct with prob. 1 – f
bad routing entry in update with prob.  f

source of update malicious with prob.  f
bad routing entry in update with prob. 1

without strong, verifiable constraints on 
entries

updated entry is faulty, prob.  f (1 – f ) + f  > f

fraction of bad entries grows over time



Locality vs. security

Flexibility to choose routing table entries
Example: Pastry and Tapestry

Low delay routes 

Vulnerable to previous attack

Constrained routing table entry choice
Example: Chord

High delay

More secure



Secure routing tables

two routing tables: locality aware and

constrained routing table
strong, verifiable constraints on routing entries 

each entry has live nodeId closest to point in id space

attacker controls nodeId closest to point with prob. f

entries bad with probability  f (with certified nodeIds)

node joining
secure routing from multiple seed nodes

obtain neighbor set with high probability 

build constrained routing table from neighbors’ tables



Attacks on forwarding

attacker
controls fraction  f  of nodes

controls fraction  f  of routing entries 

can drop or misroute messages

probability of routing correctly drops fast
when number of hops increases

Larger p2p ring more hops to destination

when fraction of compromised nodes  f  
increases 



Probability of routing correctly
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Secure forwarding

route efficiently with topology aware 
routing

run routing failure test
if no failure, done

use redundant routing with constrained 
table



Routing failure test: idea

density of faulty nodeIds is lower 
average distance between nodeIds: 2128 / N

average distance between faulty nodeIds: 2128 

/ (f N)

id space
2128/N

2128/(fN)

faulty nodeId

correct nodeId



Routing failure test: how it works

route efficiently and get neighbor set

compute average:
distance between ids in sender’s neighbor set: 
µs

distance between ids in receiver’s neighbor 
set: µR

if µR > µs × γ, signal failure

otherwise, signal success



Routing failure test: performance
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Routing failure test: performance
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Routing failure test: attacks

Attacker can fool test by
1. using nodeIds of stopped correct nodes

2. mixing nodeIds of correct and incorrect nodes

3. suppressing faulty nodeIds 
near sender increases α; near receiver increases β

Solution for 1 and 2
talk with nodeId owners before running test

query/validate all nodes in a neighbor set

no solution for 3: reduced test accuracy



Redundant routing

Use redundancy when routing test fails
send messages over diverse routes to key k

route messages through neighbors

neighbor set anycast
avoid early convergence on k’s root

delivery to first node in route with key k in neighbor 
set

collect neighbor set proposals 

wait for all replies or a timeout

pick r nodeIds closest to key k as its replica 
roots



Redundant routing: performance
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Secure routing summary

Vulnerabilities when nodes are malicious
Message forwarding

Route updates

Randomness assumptions of p2p primitives

Techniques to increase reliability
Certified nodeId assignment

Redundant routing / neighbor set density 
checking

Constrained routing (trade-off locality vs. 
robustness)
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