
Security for Peer-to-Peer
Networks

Dan S. Wallach, Rice University

Collaborators:
Scott Crosby, Peter Druschel, Alan Mislove,
Animesh Nandi, Seth Nielson, Tsuen Wan
Ngan, Ansley Post, Atul Singh, Rice
University / Max Planck Institute

Antony Rowstron, Miguel Castro, Ayalvadi
Ganesh
Microsoft Research Cambridge, UK

Structured p2p overlay networks

operation:
route(msg,key)

overlay network

k1,v1

k3,v3

k6,v6

k,v

node i

node j

route(“insert v”, k)

route(“lookup”, k) v

• structured overlay network maps keys to nodes
• routes messages to keys; can implement hash table

[CAN, Chord, Kademlia, Pastry, Skipnets, Tapestry, Viceroy]

Why structured overlays?

scalable
route in O(log N) hops with O(log N) node
state

balance routing and key management load

self-organizing
fix overlay when nodes join or leave

redistribute load when nodes join or leave

completely decentralized with no
administrators

Good substrate for distributed applications

Problem 1: attacks on routing

some overlay nodes are likely to be
malicious

large scale

distributed open environment

no special administration

malicious nodes can attack routing

corrupt messages, stored data, and services

drop messages

misroute messages

Problem 2: fair-sharing of resources

Why should node A do work on behalf of
node B?

Tragedy of the commons
Why contribute resources if it’s not necessary?

Example: Most Gnutella users do not
contribute disk space to the network

BitTorrent exactly addresses this problem!

In this talk

Routing security
Improve robustness of p2p primitives

Tollerate some fraction of malicious nodes

The next talk
Application-level fairness

Auditing mechanisms that enforce fairness
Economic incentives to participate correctly

Traditional security ideas?

Integrity and authenticity guarantees
self-certifying data and services

Byzantine fault tolerant replication

Denial-of-service
easy to detect dropped messages

hard to detect misrouting
sender does not know message destination

overlay structure determines message destination

attacker can misroute to credible destination

Structured routing example

Pastry p2p substrate
[Rowstron, Druschel ’01]

Techniques generalize to other p2p systems

Mapping keys to nodes

• large id space (128 bit integers)

• nodeIds picked randomly from space

• keys picked randomly from space

• key is managed by its root node:

• live node with id closest to the key

• key is replicated by its replica roots:

• r nodes with ids closest to key

root node
for key

id space

nodeId
key

Node routing state

ids and keys are 128-bit numbers in base 2b

typically, b=4 (hexadecimal, base 16)

topology aware routing table
matrix with 128/4 rows and 16 columns
entry in row i and column j contains a

nodeId that matches current nodeId in first i digits
and has value j in the next digit
id is among the closest in underlying network

neighbor set: L/2 closest ids left and right

typically, L=16 or L=32

Pastry: routing

d46a1c

d4213f

d13da3

65a1fc
d462ba

nodeId
key

route(m,d46a1c)

prefix matching: each hop resolves extra key digit
neighbor set used to find root node in last hop
properties: log16N hops with low delay routes

Secure routing

sec-route(m,k,r):
delivers message m to all the correct replica
roots of key k with high probability

r is the number of replica roots

assumed security model
Byzantine faults: arbitrary behavior

bound f on fraction of faulty overlay nodes

Attacks on nodeId assignment

attacker can obtain many nodeIds
• control arbitrary fraction f

• a.k.a. Sybil attacks [Doceur ’02]

attacker can pick ids closest to a key
• control all replica roots (targeted attack)
• break Pastry invariant on neighbor sets

Secure nodeId assignment

certified nodeIds

trusted certification authorities
assign random nodeIds

certificates binding id with node public key

charge money for certificates or check
identities

nodes in small overlays must be trusted

distributed assignment has fundamental weakness

Routing table maintenance

routing table maintenance should ensure:
If attacker controls nodes with probability f,

entries in routing tables are bad with
probability f

attacks on routing table maintenance
malicious seed nodes for joining

bad routing updates
exploit locality to bias choice of routing entries

exploit flexibility to bias choice of routing entries

Routing updates on Pastry

source of update correct with prob. 1 – f
bad routing entry in update with prob. f

source of update malicious with prob. f
bad routing entry in update with prob. 1

without strong, verifiable constraints on
entries

updated entry is faulty, prob. f (1 – f) + f > f

fraction of bad entries grows over time

Locality vs. security

Flexibility to choose routing table entries
Example: Pastry and Tapestry

Low delay routes

Vulnerable to previous attack

Constrained routing table entry choice
Example: Chord

High delay

More secure

Secure routing tables

two routing tables: locality aware and

constrained routing table
strong, verifiable constraints on routing entries

each entry has live nodeId closest to point in id space

attacker controls nodeId closest to point with prob. f

entries bad with probability f (with certified nodeIds)

node joining
secure routing from multiple seed nodes

obtain neighbor set with high probability

build constrained routing table from neighbors’ tables

Attacks on forwarding

attacker
controls fraction f of nodes

controls fraction f of routing entries

can drop or misroute messages

probability of routing correctly drops fast
when number of hops increases

Larger p2p ring more hops to destination

when fraction of compromised nodes f
increases

Probability of routing correctly

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
fraction of nodes compromised

pr
ob

. o
f s

uc
ce

ss
fu

l r
ou

tin
g

N=1000

N=10000

N=100000

N=1000000

Secure forwarding

route efficiently with topology aware
routing

run routing failure test
if no failure, done

use redundant routing with constrained
table

Routing failure test: idea

density of faulty nodeIds is lower
average distance between nodeIds: 2128 / N

average distance between faulty nodeIds: 2128

/ (f N)

id space
2128/N

2128/(fN)

faulty nodeId

correct nodeId

Routing failure test: how it works

route efficiently and get neighbor set

compute average:
distance between ids in sender’s neighbor set:
µs

distance between ids in receiver’s neighbor
set: µR

if µR > µs × γ, signal failure

otherwise, signal success

Routing failure test: performance

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

1 1.5 2 2.5 3
gamma

al
ph

a
an

d
be

ta

beta
alpha

false positive rate: alpha; false negative rate: beta

Routing failure test: performance

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
percentage of nodes compromised

fa
ilu

re
 ra

te

Routing failure test: attacks

Attacker can fool test by
1. using nodeIds of stopped correct nodes

2. mixing nodeIds of correct and incorrect nodes

3. suppressing faulty nodeIds
near sender increases α; near receiver increases β

Solution for 1 and 2
talk with nodeId owners before running test

query/validate all nodes in a neighbor set

no solution for 3: reduced test accuracy

Redundant routing

Use redundancy when routing test fails
send messages over diverse routes to key k

route messages through neighbors

neighbor set anycast
avoid early convergence on k’s root

delivery to first node in route with key k in neighbor
set

collect neighbor set proposals

wait for all replies or a timeout

pick r nodeIds closest to key k as its replica
roots

Redundant routing: performance

0.999
0.9991
0.9992
0.9993
0.9994
0.9995
0.9996
0.9997
0.9998
0.9999

1

0 10 20 30 40 50
percentage of nodes compromised

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

probability of success greater than 0.999 if f < 0.25

Secure routing summary

Vulnerabilities when nodes are malicious
Message forwarding

Route updates

Randomness assumptions of p2p primitives

Techniques to increase reliability
Certified nodeId assignment

Redundant routing / neighbor set density
checking

Constrained routing (trade-off locality vs.
robustness)

	Security for Peer-to-Peer Networks
	Structured p2p overlay networks
	Why structured overlays?
	Problem 1: attacks on routing
	Problem 2: fair-sharing of resources
	In this talk
	Traditional security ideas?
	Structured routing example
	Mapping keys to nodes
	Node routing state
	Pastry: routing
	Secure routing
	Attacks on nodeId assignment
	Secure nodeId assignment
	Routing table maintenance
	Routing updates on Pastry
	Locality vs. security
	Secure routing tables
	Attacks on forwarding
	Probability of routing correctly
	Secure forwarding
	Routing failure test: idea
	Routing failure test: how it works
	Routing failure test: performance
	Routing failure test: performance
	Routing failure test: attacks
	Redundant routing
	Redundant routing: performance
	Secure routing summary

